Back


Newsgroup sci.mech.fluids 4103

Directory

Postdoc in Experimental Fluids Dynamics -- "Eric G. Paterson"
Re: Numerical solution for nonlinear PDE -- garcia22@llnl.gov (Manuel Garcia)
Re: torricelli barometer -- Ben Tansley
Chemical Processing -- Kevin Przytulski
torricelli barometer -- crips
Grey water (heat recovery) -- A-M@Concepta.com

Articles

Postdoc in Experimental Fluids Dynamics
"Eric G. Paterson"
Fri, 27 Jun 1997 14:51:02 -0500
/jcAIwAAAAAAAAQAABkAAAAAAAAAAAEAAAAJmgAAD6YAAAAAAAAImgAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAADgAAIAAADgAAIAAADiAAAAAADiAAAAAADiAADgAADi4AEgAADkAAAAAA
DkAAAAAADkAAAAAADkAACgAADkoACgAADlQAAAAADlQAOAAADowAeAAADkAAAAAADwQAIAAA
DyQAFgAAD0YAKgAAD3AAAAAADiAAAAABAAEAAA9GAAAAAA86AAwAAA9GAAAAAA9GAAAAAA9w
ADYAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAElvd2EgSW5zdGl0dXRl
IG9mIEh5ZHJhdWxpYyBSZXNlYXJjaCAoSUlIUiksIG9mIFRoZSBVbml2ZXJzaXR5IG9mIElv
d2EncyBDb2xsZWdlIG9mIEVuZ2luZWVyaW5nIGhhcyBhbiBpbW1lZGlhdGUgb3BlbmluZyBm
b3IgYSBQb3N0ZG9jdG9yYWwgUmVzZWFyY2ggQXNzb2NpYXRlIGluIHRoZSBhcmVhIG9mIGV4
cGVyaW1lbnRhbCBmbHVpZCBkeW5hbWljcyAoRUZEKSB3aXRoIGFwcGxpY2F0aW9ucyB0byBz
aGlwIGh5ZHJvZHluYW1pY3MuICBUaGUgY2FuZGlkYXRlIHdpbGwgam9pbiBhbiBhY3RpdmUg
dGVhbSBvZiByZXNlYXJjaGVycyB3b3JraW5nIG9uIHByb2plY3RzLCBmdW5kZWQgYnkgdGhl
IE9mZmljZSBvZiBOYXZhbCBSZXNlYXJjaCwgd2hpY2ggYXJlIGZvY3VzZWQgb24gYm90aCBi
YXNpYyBhbmQgYXBwbGllZCBhc3BlY3RzIG9mIHVuc3RlYWR5IHR1cmJ1bGVudCwgZnJlZS1z
dXJmYWNlIGZsb3dzLiAgQSB1bmlxdWUgYXNwZWN0IG9mIHRoZXNlIHByb2plY3RzIGlzIHRo
ZSBjb21wbGVtZW50YXJ5IGFuZCBjb25jdXJyZW50IGNvbXB1dGF0aW9uYWwgZmx1aWQgZHlu
YW1pY3MgKENGRCkgYW5kIEVGRCwgYm90aCBvZiB3aGljaCBjb250cmlidXRlIHRvIG92ZXJh
bGwgcHJvZ3JhbSBnb2Fscy4NDUNhbmRpZGF0ZXMgbXVzdCBoYXZlIGVhcm5lZCBhIGRvY3Rv
cmF0ZSBpbiBNZWNoYW5pY2FsIEVuZ2luZWVyaW5nIG9yIGEgY2xvc2VseSByZWxhdGVkIGRp
c2NpcGxpbmUsIGFuZCBoYXZlIGludGVyZXN0cyBpbiBib3RoIGJhc2ljIGV4cGVyaW1lbnRh
bCBtZWFzdXJlbWVudCB0ZWNobmlxdWVzIGFuZCBwcmFjdGljYWwgYXBwbGljYXRpb25zLiAg
RXhwZXJ0aXNlIGluIExEViBhbmQgUElWIG1lYXN1cmVtZW50IHRlY2huaXF1ZXMgaXMgZGVz
aXJlZC4gIElJSFIgZmFjaWxpdGllcyBpbmNsdWRlIGEgMTAwLW0tbG9uZyB0b3dpbmcgdGFu
ayBlcXVpcHBlZCB3aXRoIGEgc3RhdGUtb2YtdGhlLWFydCB0b3dlZCBQSVYgKGZpcnN0IG9u
ZSBpbiB0aGUgd29ybGQpLCBMRFYgc3lzdGVtIGFuZCBvdGhlciBjb252ZW50aW9uYWwgaW5z
dHJ1bWVudGF0aW9uLiAgQm90aCBpZGVhbGl6ZWQgYW5kIHByYWN0aWNhbCBnZW9tZXRyaWVz
IGFyZSB1c2VkLiAgQ3VycmVudCAgZm9jdXMgYXJlYXMgaW5jbHVkZSB1bnN0ZWFkeSB3YXZl
IGJvdW5kYXJ5LWxheWVyIGFuZCB3YWtlIGludGVyYWN0aW9uLCBmcmVlLXN1cmZhY2UgZWZm
ZWN0cyBvbiB0dXJidWxlbmNlLCBhbmQgd2F2ZS1pbmR1Y2VkIHNlcGFyYXRpb24uICBGb3Ig
aW5mb3JtYXRpb24gYWJvdXQgdGhlIGV4aXN0aW5nIGV4cGVyaW1lbnRhbCBmYWNpbGl0aWVz
IHBsZWFzZSBicm93c2Ugb3VyIFdXVyBob21lIHBhZ2UgYXQ6ICBodHRwOi8vd3d3LmlpaHIu
dWlvd2EuZWR1Ly4gIA0NSUlIUiBpcyBvbmUgb2YgdGhlIG5hdGlvbidzIHByZW1pZXIgYW5k
IGxvbmdlc3QgZXN0YWJsaXNoZWQgZmx1aWRzIHJlc2VhcmNoIGFuZCBlbmdpbmVlcmluZyBs
YWJvcmF0b3JpZXMgYW5kIHByb3ZpZGVzIGV4Y2VsbGVudCBvcHBvcnR1bml0aWVzIHRvIGJ1
aWxkIGEgY2FyZWVyIGluIGJhc2ljIGFuZCBhcHBsaWVkIHJlc2VhcmNoIGluIHRoZSBicm9h
ZCBmaWVsZHMgb2YgZmx1aWQgbWVjaGFuaWNzLCBoeWRyYXVsaWNzLCBhbmQgdGhlIGh5ZHJv
c2NpZW5jZXMuDQ1BcHBsaWNhbnRzIG11c3Qgc3VibWl0IGEgcmVzdW1lLCB3aXRoIGEgbGlz
dCBvZiBhdCBsZWFzdCB0aHJlZSByZWZlcmVuY2VzLCBhbmQgY29waWVzIG9mIHNlbGVjdGVk
IHB1YmxpY2F0aW9ucywgaWYgYXBwcm9wcmlhdGUsIHRvIFByb2Zlc3NvciBGcmVkIFN0ZXJu
LCBJb3dhIEluc3RpdHV0ZSBvZiBIeWRyYXVsaWMgUmVzZWFyY2gsIFRoZSBVbml2ZXJzaXR5
IG9mIElvd2EsIElvd2EgQ2l0eSBJQSA1MjI0Mi0xNTg1IG9yIGJ5IGUtbWFpbCB0byBmcmVk
ZXJpY2stc3Rlcm5AdWlvd2EuZWR1IHdpdGggdGhlIHN1YmplY3QgaGVhZGVyIEVGRC9zaGlw
IGh5ZHJvIHBvc3Rkb2MuDQ1UaGUgVW5pdmVyc2l0eSBvZiBJb3dhIGlzIGFuIEVxdWFsIE9w
cG9ydHVuaXR5L0FmZmlybWF0aXZlIEFjdGlvbiBlbXBsb3llciBhbmQgZW5jb3VyYWdlcyBh
cHBsaWNhdGlvbnMgZnJvbSB3b21lbiBhbmQgbWlub3JpdGllcy4gIFBvc2l0aW9uIGlzIGF2
YWlsYWJsZSBpbW1lZGlhdGVseS4gIEFwcGxpY2F0aW9ucyB3aWxsIGJlIGFjY2VwdGVkIHVu
dGlsIHRoZSBwb3NpdGlvbiBpcyBmaWxsZWQuDQJ1AAAAAAAAAgAZAZAAAAAAAEAAAAAAAAAA
AAABAAAAAAAAAAAAAAAAAAAAAD3gL9AFoAcIBaAHCAAAAtBSAAABAAEAAQIAAAAAAAAAAAEA
AAACCE5ldyBZb3JrAAAAAAAAAAAAAAAAAQAAAAmaAAAJnQD6AAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgBAAAIYAAAAABgCAAABAAAA
A3IAAANzAAAGYgAABmMAAAdsAAAHbQAACLYAAAi3AAAJmvv28fbs9uf27AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAABCHAAAwAAAQAAAMhwAAMAAAEAAAJIcAADAAA
BAAAASHAAAwAAAQAAAghwAAMAAkAAAADAAANCgAYABQYAAAAABgACgcAAAAAAAAAAAEA3gAA
AAAAAAiaAAUAAAmaAAAAAAAACJoQAP//AAAAAQAAAAABAAAACZ0ABQAAAQAAAAmaAAYAAAAC
AAMABAANAA4ADwAQABIAFAAVABYAFwAhACIAyASxBfYGQgagB/oIFwgYCdMmcCbiK6oyBwAD
AAAASABIAAAAAAMAAkj/9P/yAwwCVgNHBSgD/AACAAAASABIAAAAAAMAAkgAAQAAAGQAAAAB
AAEBAQAAAAEnDwABAAEAAAAAAAAAAAAAAABoCAAZAZAAAAAAEAAAAAAAAAAAAAABAAAAAAAA
AAAAAAAAAAAAAD3gL9AFoAcIBaAHCAAAAtBSAAABAAEAAUAAAAAAAABIABYNLTpIUCBMYXNl
ckpldAAKAAAAAAABAAAAFAVUaW1lc8ABAAAAAAiZAAAImQAGgACAAAAACJkAAAAAAEUAHwJl
AhkBZAACAnAB/AA2FDY9OTdfcG9zdGRvY3RfYWQuZG9jAA1FcmljIFBhdGVyc29uAAANRXJp
YyBQYXRlcnNvbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==
Return to Top
Re: Numerical solution for nonlinear PDE
garcia22@llnl.gov (Manuel Garcia)
Fri, 27 Jun 1997 11:12:37 +0800
In article <33A502D0.41C6@iatfrisc2.fzk.de>, Michael Bunk
 wrote:
> In the context of viscous gravity currents I have to solve an equation
> 
>   dH/dtau - d/dX(H^3 dH/dX) == 0
> 
> with
> 
>   Integrate[H[X,tau] ,{X,0,A[tau]}] == CV tau^alpha
> 
>   H[A[tau],X] == 0 .
> 
> I can get a similarity solution, but how to get a full numerical
> solution?
> 
> Thanks for all comments!!!
> 
> Michael 
> 
> -- 
> Michael Bunk
> 
> Forschungszentrum Karlsruhe
> Institut fuer Angewandte Thermo- und Fluiddynamik
> Postfach 3640
> D-76021 Karlsruhe
> Tel.: 07247/82-2528
****************************************************************************
Your equation is a nonlinear diffusion equation, quite interesting. I
cannot decode the "integrate" line of your message, and the last condition
seems to have the parameters reversed (?). In any case my comments are
fairly general.
CONVENTIONS***********************************************
In order to transmit math via ascii I will use the conventions below:
1) partial derivative:       dx, dy, deta ("d" "eta"), d2x (2nd derivative)
2) differential operators:   (d/dx)[...],  (d2/d2x)[...]
3) integral:
          Integral function I, from lower limit "a," to upper limit "b,"
          with integrand f(..,..,x,..,..), and integration over "x":
                             I{a,b,f(..,..,x,..,..)}dx
4) double integral:
          inner integral over dx, from a to y,
          outer integral over dy, from b to z:
                             I{b,z,I{a,y,f(..,x,..)}dx}dy
5)    a) exponential:              ^2, ^58,...
      b) multiplication:           *
      c) add, sub, divide:         +, -, /
      d) precedence (binding):     ^#, *, /, + and -
         (exponentials "bind" most tightly, then products, ratios, and
sums)      
EQUATION**************************************************
The problem at hand:
(d/dt)H(x,t)  = (d/dx)[ H(x,t)^3 * (d/dx)[ H(x,t) ]]
initial condition:        H(x,0)           (known)
boundary condition #1:    H(0,t)           (known)
boundary condition #2:    (d/dx)[H(0,t)]   (known)
ANALYSIS**************************************************
08 steps follow:
01)     (d/dt)[H(x,t)]  =  (d2/d2x)[(1/4)*(H(x,t)^4]
02)  integrate time ("t") from 0 to t:
          H(x,t)  - H(x,0)  =  (d2/d2x)[ I{0,t,(1/4)*H(x,nu)^4}dnu ]
03)  integrate space ("x") from 0 to x:
          I{0,x,(H(eta,t) - H(eta,0))}deta  = 
               (d/dx)[I{0,t,(1/4)*(H(x,nu)^4)}dnu ]  + ...
                    -(d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ]
04)  integrate space again:
          I{0,x, I{0,eta, (H(zeta,t) - H(zeta,0))}dzeta }deta  =  ...
             I{0,t,(1/4)*(H(x,nu)^4)}dnu  -  I{0,t,(1/4)*(H(0,nu)^4)}dnu
+...
                 - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] )
05)  reverse the order of double integration (easily shown graphically):
       I{0,x,I{0,eta,f(..,zeta,..)}dzeta}deta  =>
               I{0,x,I{zeta,x,f(..,zeta,..)}deta}dzeta
       in this case find:
          I{0,x,I{zeta,x, (H(zeta,t) - H(zeta,0)) }deta}dzeta  =  ...
               (1/4)*I{0,t,H(x,nu)^4}dnu - (1/4)*I{0,t,H(0,nu)^4}dnu + ...
                    - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] )
06)  double integral becomes single integral:
     I{0,x,(x-zeta)*(H(zeta,t) - H(zeta,0))}dzeta  =  ...
          (1/4)*I{0,t,(H(x,nu)^4 - H(0,nu)^4)}dnu +...
               - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] )
07)  group "unknowns" on left, "knowns" on right:
     I{0,x,(x-zeta)*H(zeta,t)}dzeta - (1/4)*I{0,t,H(x,nu)^4}dnu  =  ...
          I{0,x,(x-zeta)*H(zeta,0)}dzeta - (1/4)*I{0,t,H(0,nu)^4}dnu  + 
...
               - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] )
08) iterate for a solution:
  H(x,t)  into =>  I{0,x,(x-zeta)*H(zeta,t)}dzeta -
(1/4)*I{0,t,H(x,nu)^4}dnu
  must equal =>  F(x,t) = known = (right-hand-side of 07))
     Note the (left-hand-side) => integral(dx@t) + integral(dt@x)
     Note that time integral involves H^4, so it is always positive
     (H assumed real), the space integral can have either sign.
SUMMARY
This approach reduces the problem to single integrals which sum to a know
field,
F(x,t), which is determined from the initial and boundary conditions.
Iteration is used because of the nonlinearity, H(x,t)^4, (linear equation
has matrix solution). The advantage here is an integral form (stable
numerically), and single integration (single loops). Variants for different
"edge" (boundary and initial) conditions affect integral limits and
resulting F(x,t), not general approach. I have written this out clearly by
hand on a single side of a sheet of paper, including two figures. If you
would like a copy please e-mail me your address (for response via mail) or
fax number (for faster and fuzzier). If it works, let me know. Have fun. MG
-- 
Manuel Garcia
LLNL L-153
POB 808, Livermore, CA 94550
(510) 422-6017
garcia22@llnl.gov
garcia22@popgun.llnl.gov
Return to Top
Re: torricelli barometer
Ben Tansley
Fri, 27 Jun 1997 23:01:15 +0100
In article <33B3D21E.167E@wanadoo.fr>, crips  writes
>Does some body know a good way to replace mercury witch a other liquid
>in a torricelli barometer, in the same size
>
>thank you
>
>
>thierry steinbauer
Not in the same size. You'd need another liquid as dense as mercury. The height
of the liquid under pressure increases for lower density liquids.
Hope this helps.
-- 
Ben Tansley.
Return to Top
Chemical Processing
Kevin Przytulski
Fri, 27 Jun 1997 13:27:12 -0500
Have you seen your wife today, well she's at http://www.chemicalprocessing.com
Return to Top
torricelli barometer
crips
Fri, 27 Jun 1997 16:45:50 +0200
Does some body know a good way to replace mercury witch a other liquid
in a torricelli barometer, in the same size
thank you
thierry steinbauer
Return to Top
Grey water (heat recovery)
A-M@Concepta.com
Sat, 28 Jun 1997 00:35:32 -0600
I want to know if there is a equipment acctually commercialized which is
able to recover the heat contained in the water (or grey water) rejected
to the drain of the shower, bath and dishwasher.
Send your answer at: A-M@Concepta.com
-------------------==== Posted via Deja News ====-----------------------
      http://www.dejanews.com/     Search, Read, Post to Usenet
Return to Top

Downloaded by WWW Programs
Byron Palmer