![]() |
![]() |
Back |
/jcAIwAAAAAAAAQAABkAAAAAAAAAAAEAAAAJmgAAD6YAAAAAAAAImgAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAADgAAIAAADgAAIAAADiAAAAAADiAAAAAADiAADgAADi4AEgAADkAAAAAA DkAAAAAADkAAAAAADkAACgAADkoACgAADlQAAAAADlQAOAAADowAeAAADkAAAAAADwQAIAAA DyQAFgAAD0YAKgAAD3AAAAAADiAAAAABAAEAAA9GAAAAAA86AAwAAA9GAAAAAA9GAAAAAA9w ADYAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAA9GAAAAAElvd2EgSW5zdGl0dXRl IG9mIEh5ZHJhdWxpYyBSZXNlYXJjaCAoSUlIUiksIG9mIFRoZSBVbml2ZXJzaXR5IG9mIElv d2EncyBDb2xsZWdlIG9mIEVuZ2luZWVyaW5nIGhhcyBhbiBpbW1lZGlhdGUgb3BlbmluZyBm b3IgYSBQb3N0ZG9jdG9yYWwgUmVzZWFyY2ggQXNzb2NpYXRlIGluIHRoZSBhcmVhIG9mIGV4 cGVyaW1lbnRhbCBmbHVpZCBkeW5hbWljcyAoRUZEKSB3aXRoIGFwcGxpY2F0aW9ucyB0byBz aGlwIGh5ZHJvZHluYW1pY3MuICBUaGUgY2FuZGlkYXRlIHdpbGwgam9pbiBhbiBhY3RpdmUg dGVhbSBvZiByZXNlYXJjaGVycyB3b3JraW5nIG9uIHByb2plY3RzLCBmdW5kZWQgYnkgdGhl IE9mZmljZSBvZiBOYXZhbCBSZXNlYXJjaCwgd2hpY2ggYXJlIGZvY3VzZWQgb24gYm90aCBi YXNpYyBhbmQgYXBwbGllZCBhc3BlY3RzIG9mIHVuc3RlYWR5IHR1cmJ1bGVudCwgZnJlZS1z dXJmYWNlIGZsb3dzLiAgQSB1bmlxdWUgYXNwZWN0IG9mIHRoZXNlIHByb2plY3RzIGlzIHRo ZSBjb21wbGVtZW50YXJ5IGFuZCBjb25jdXJyZW50IGNvbXB1dGF0aW9uYWwgZmx1aWQgZHlu YW1pY3MgKENGRCkgYW5kIEVGRCwgYm90aCBvZiB3aGljaCBjb250cmlidXRlIHRvIG92ZXJh bGwgcHJvZ3JhbSBnb2Fscy4NDUNhbmRpZGF0ZXMgbXVzdCBoYXZlIGVhcm5lZCBhIGRvY3Rv cmF0ZSBpbiBNZWNoYW5pY2FsIEVuZ2luZWVyaW5nIG9yIGEgY2xvc2VseSByZWxhdGVkIGRp c2NpcGxpbmUsIGFuZCBoYXZlIGludGVyZXN0cyBpbiBib3RoIGJhc2ljIGV4cGVyaW1lbnRh bCBtZWFzdXJlbWVudCB0ZWNobmlxdWVzIGFuZCBwcmFjdGljYWwgYXBwbGljYXRpb25zLiAg RXhwZXJ0aXNlIGluIExEViBhbmQgUElWIG1lYXN1cmVtZW50IHRlY2huaXF1ZXMgaXMgZGVz aXJlZC4gIElJSFIgZmFjaWxpdGllcyBpbmNsdWRlIGEgMTAwLW0tbG9uZyB0b3dpbmcgdGFu ayBlcXVpcHBlZCB3aXRoIGEgc3RhdGUtb2YtdGhlLWFydCB0b3dlZCBQSVYgKGZpcnN0IG9u ZSBpbiB0aGUgd29ybGQpLCBMRFYgc3lzdGVtIGFuZCBvdGhlciBjb252ZW50aW9uYWwgaW5z dHJ1bWVudGF0aW9uLiAgQm90aCBpZGVhbGl6ZWQgYW5kIHByYWN0aWNhbCBnZW9tZXRyaWVz IGFyZSB1c2VkLiAgQ3VycmVudCAgZm9jdXMgYXJlYXMgaW5jbHVkZSB1bnN0ZWFkeSB3YXZl IGJvdW5kYXJ5LWxheWVyIGFuZCB3YWtlIGludGVyYWN0aW9uLCBmcmVlLXN1cmZhY2UgZWZm ZWN0cyBvbiB0dXJidWxlbmNlLCBhbmQgd2F2ZS1pbmR1Y2VkIHNlcGFyYXRpb24uICBGb3Ig aW5mb3JtYXRpb24gYWJvdXQgdGhlIGV4aXN0aW5nIGV4cGVyaW1lbnRhbCBmYWNpbGl0aWVz IHBsZWFzZSBicm93c2Ugb3VyIFdXVyBob21lIHBhZ2UgYXQ6ICBodHRwOi8vd3d3LmlpaHIu dWlvd2EuZWR1Ly4gIA0NSUlIUiBpcyBvbmUgb2YgdGhlIG5hdGlvbidzIHByZW1pZXIgYW5k IGxvbmdlc3QgZXN0YWJsaXNoZWQgZmx1aWRzIHJlc2VhcmNoIGFuZCBlbmdpbmVlcmluZyBs YWJvcmF0b3JpZXMgYW5kIHByb3ZpZGVzIGV4Y2VsbGVudCBvcHBvcnR1bml0aWVzIHRvIGJ1 aWxkIGEgY2FyZWVyIGluIGJhc2ljIGFuZCBhcHBsaWVkIHJlc2VhcmNoIGluIHRoZSBicm9h ZCBmaWVsZHMgb2YgZmx1aWQgbWVjaGFuaWNzLCBoeWRyYXVsaWNzLCBhbmQgdGhlIGh5ZHJv c2NpZW5jZXMuDQ1BcHBsaWNhbnRzIG11c3Qgc3VibWl0IGEgcmVzdW1lLCB3aXRoIGEgbGlz dCBvZiBhdCBsZWFzdCB0aHJlZSByZWZlcmVuY2VzLCBhbmQgY29waWVzIG9mIHNlbGVjdGVk IHB1YmxpY2F0aW9ucywgaWYgYXBwcm9wcmlhdGUsIHRvIFByb2Zlc3NvciBGcmVkIFN0ZXJu LCBJb3dhIEluc3RpdHV0ZSBvZiBIeWRyYXVsaWMgUmVzZWFyY2gsIFRoZSBVbml2ZXJzaXR5 IG9mIElvd2EsIElvd2EgQ2l0eSBJQSA1MjI0Mi0xNTg1IG9yIGJ5IGUtbWFpbCB0byBmcmVk ZXJpY2stc3Rlcm5AdWlvd2EuZWR1IHdpdGggdGhlIHN1YmplY3QgaGVhZGVyIEVGRC9zaGlw IGh5ZHJvIHBvc3Rkb2MuDQ1UaGUgVW5pdmVyc2l0eSBvZiBJb3dhIGlzIGFuIEVxdWFsIE9w cG9ydHVuaXR5L0FmZmlybWF0aXZlIEFjdGlvbiBlbXBsb3llciBhbmQgZW5jb3VyYWdlcyBh cHBsaWNhdGlvbnMgZnJvbSB3b21lbiBhbmQgbWlub3JpdGllcy4gIFBvc2l0aW9uIGlzIGF2 YWlsYWJsZSBpbW1lZGlhdGVseS4gIEFwcGxpY2F0aW9ucyB3aWxsIGJlIGFjY2VwdGVkIHVu dGlsIHRoZSBwb3NpdGlvbiBpcyBmaWxsZWQuDQJ1AAAAAAAAAgAZAZAAAAAAAEAAAAAAAAAA AAABAAAAAAAAAAAAAAAAAAAAAD3gL9AFoAcIBaAHCAAAAtBSAAABAAEAAQIAAAAAAAAAAAEA AAACCE5ldyBZb3JrAAAAAAAAAAAAAAAAAQAAAAmaAAAJnQD6AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgBAAAIYAAAAABgCAAABAAAA A3IAAANzAAAGYgAABmMAAAdsAAAHbQAACLYAAAi3AAAJmvv28fbs9uf27AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAABCHAAAwAAAQAAAMhwAAMAAAEAAAJIcAADAAA BAAAASHAAAwAAAQAAAghwAAMAAkAAAADAAANCgAYABQYAAAAABgACgcAAAAAAAAAAAEA3gAA AAAAAAiaAAUAAAmaAAAAAAAACJoQAP//AAAAAQAAAAABAAAACZ0ABQAAAQAAAAmaAAYAAAAC AAMABAANAA4ADwAQABIAFAAVABYAFwAhACIAyASxBfYGQgagB/oIFwgYCdMmcCbiK6oyBwAD AAAASABIAAAAAAMAAkj/9P/yAwwCVgNHBSgD/AACAAAASABIAAAAAAMAAkgAAQAAAGQAAAAB AAEBAQAAAAEnDwABAAEAAAAAAAAAAAAAAABoCAAZAZAAAAAAEAAAAAAAAAAAAAABAAAAAAAA AAAAAAAAAAAAAD3gL9AFoAcIBaAHCAAAAtBSAAABAAEAAUAAAAAAAABIABYNLTpIUCBMYXNl ckpldAAKAAAAAAABAAAAFAVUaW1lc8ABAAAAAAiZAAAImQAGgACAAAAACJkAAAAAAEUAHwJl AhkBZAACAnAB/AA2FDY9OTdfcG9zdGRvY3RfYWQuZG9jAA1FcmljIFBhdGVyc29uAAANRXJp YyBQYXRlcnNvbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==Return to Top
In article <33A502D0.41C6@iatfrisc2.fzk.de>, Michael BunkReturn to Topwrote: > In the context of viscous gravity currents I have to solve an equation > > dH/dtau - d/dX(H^3 dH/dX) == 0 > > with > > Integrate[H[X,tau] ,{X,0,A[tau]}] == CV tau^alpha > > H[A[tau],X] == 0 . > > I can get a similarity solution, but how to get a full numerical > solution? > > Thanks for all comments!!! > > Michael > > -- > Michael Bunk > > Forschungszentrum Karlsruhe > Institut fuer Angewandte Thermo- und Fluiddynamik > Postfach 3640 > D-76021 Karlsruhe > Tel.: 07247/82-2528 **************************************************************************** Your equation is a nonlinear diffusion equation, quite interesting. I cannot decode the "integrate" line of your message, and the last condition seems to have the parameters reversed (?). In any case my comments are fairly general. CONVENTIONS*********************************************** In order to transmit math via ascii I will use the conventions below: 1) partial derivative: dx, dy, deta ("d" "eta"), d2x (2nd derivative) 2) differential operators: (d/dx)[...], (d2/d2x)[...] 3) integral: Integral function I, from lower limit "a," to upper limit "b," with integrand f(..,..,x,..,..), and integration over "x": I{a,b,f(..,..,x,..,..)}dx 4) double integral: inner integral over dx, from a to y, outer integral over dy, from b to z: I{b,z,I{a,y,f(..,x,..)}dx}dy 5) a) exponential: ^2, ^58,... b) multiplication: * c) add, sub, divide: +, -, / d) precedence (binding): ^#, *, /, + and - (exponentials "bind" most tightly, then products, ratios, and sums) EQUATION************************************************** The problem at hand: (d/dt)H(x,t) = (d/dx)[ H(x,t)^3 * (d/dx)[ H(x,t) ]] initial condition: H(x,0) (known) boundary condition #1: H(0,t) (known) boundary condition #2: (d/dx)[H(0,t)] (known) ANALYSIS************************************************** 08 steps follow: 01) (d/dt)[H(x,t)] = (d2/d2x)[(1/4)*(H(x,t)^4] 02) integrate time ("t") from 0 to t: H(x,t) - H(x,0) = (d2/d2x)[ I{0,t,(1/4)*H(x,nu)^4}dnu ] 03) integrate space ("x") from 0 to x: I{0,x,(H(eta,t) - H(eta,0))}deta = (d/dx)[I{0,t,(1/4)*(H(x,nu)^4)}dnu ] + ... -(d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] 04) integrate space again: I{0,x, I{0,eta, (H(zeta,t) - H(zeta,0))}dzeta }deta = ... I{0,t,(1/4)*(H(x,nu)^4)}dnu - I{0,t,(1/4)*(H(0,nu)^4)}dnu +... - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] ) 05) reverse the order of double integration (easily shown graphically): I{0,x,I{0,eta,f(..,zeta,..)}dzeta}deta => I{0,x,I{zeta,x,f(..,zeta,..)}deta}dzeta in this case find: I{0,x,I{zeta,x, (H(zeta,t) - H(zeta,0)) }deta}dzeta = ... (1/4)*I{0,t,H(x,nu)^4}dnu - (1/4)*I{0,t,H(0,nu)^4}dnu + ... - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] ) 06) double integral becomes single integral: I{0,x,(x-zeta)*(H(zeta,t) - H(zeta,0))}dzeta = ... (1/4)*I{0,t,(H(x,nu)^4 - H(0,nu)^4)}dnu +... - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] ) 07) group "unknowns" on left, "knowns" on right: I{0,x,(x-zeta)*H(zeta,t)}dzeta - (1/4)*I{0,t,H(x,nu)^4}dnu = ... I{0,x,(x-zeta)*H(zeta,0)}dzeta - (1/4)*I{0,t,H(0,nu)^4}dnu + ... - x*( (d/dx)[ I{0,t,(1/4)*(H(0,nu)^4)}dnu ] ) 08) iterate for a solution: H(x,t) into => I{0,x,(x-zeta)*H(zeta,t)}dzeta - (1/4)*I{0,t,H(x,nu)^4}dnu must equal => F(x,t) = known = (right-hand-side of 07)) Note the (left-hand-side) => integral(dx@t) + integral(dt@x) Note that time integral involves H^4, so it is always positive (H assumed real), the space integral can have either sign. SUMMARY This approach reduces the problem to single integrals which sum to a know field, F(x,t), which is determined from the initial and boundary conditions. Iteration is used because of the nonlinearity, H(x,t)^4, (linear equation has matrix solution). The advantage here is an integral form (stable numerically), and single integration (single loops). Variants for different "edge" (boundary and initial) conditions affect integral limits and resulting F(x,t), not general approach. I have written this out clearly by hand on a single side of a sheet of paper, including two figures. If you would like a copy please e-mail me your address (for response via mail) or fax number (for faster and fuzzier). If it works, let me know. Have fun. MG -- Manuel Garcia LLNL L-153 POB 808, Livermore, CA 94550 (510) 422-6017 garcia22@llnl.gov garcia22@popgun.llnl.gov
In article <33B3D21E.167E@wanadoo.fr>, cripsReturn to Topwrites >Does some body know a good way to replace mercury witch a other liquid >in a torricelli barometer, in the same size > >thank you > > >thierry steinbauer Not in the same size. You'd need another liquid as dense as mercury. The height of the liquid under pressure increases for lower density liquids. Hope this helps. -- Ben Tansley.
Have you seen your wife today, well she's at http://www.chemicalprocessing.comReturn to Top
Does some body know a good way to replace mercury witch a other liquid in a torricelli barometer, in the same size thank you thierry steinbauerReturn to Top
I want to know if there is a equipment acctually commercialized which is able to recover the heat contained in the water (or grey water) rejected to the drain of the shower, bath and dishwasher. Send your answer at: A-M@Concepta.com -------------------==== Posted via Deja News ====----------------------- http://www.dejanews.com/ Search, Read, Post to UsenetReturn to Top